
For :
BitBot

By :
Camden Smallwood @ CertiK
camden.smallwood@certik.org

Angelos Apostolidis @ CertiK
angelos.apostolidis@certik.org

BitBot

Security Assessment

January 15th, 2021

mailto:camden.smallwood@certik.org
mailto:angelos.apostolidis@certik.org

 Disclaimer

CertiK reports are not, nor should be considered, an “endorsement” or “disapproval” of any
particular project or team. These reports are not, nor should be considered, an indication of the
economics or value of any “product” or “asset” created by any team or project that contracts
CertiK to perform a security review.

CertiK Reports do not provide any warranty or guarantee regarding the absolute bug-free nature
of the technology analyzed, nor do they provide any indication of the technologies proprietors,
business, business model or legal compliance.

CertiK Reports should not be used in any way to make decisions around investment or
involvement with any particular project. These reports in no way provide investment advice, nor
should be leveraged as investment advice of any sort.

CertiK Reports represent an extensive auditing process intending to help our customers increase
the quality of their code while reducing the high level of risk presented by cryptographic tokens
and blockchain technology.

Blockchain technology and cryptographic assets present a high level of ongoing risk. CertiK’s
position is that each company and individual are responsible for their own due diligence and
continuous security. CertiK’s goal is to help reduce the attack vectors and the high level of
variance associated with utilizing new and consistently changing technologies, and in no way
claims any guarantee of security or functionality of the technology we agree to analyze.

What is a CertiK report?

A document describing in detail an in depth analysis of a particular piece(s) of source code
provided to CertiK by a Client.
An organized collection of testing results, analysis and inferences made about the structure,
implementation and overall best practices of a particular piece of source code.
Representation that a Client of CertiK has indeed completed a round of auditing with the
intention to increase the quality of the company/product's IT infrastructure and or source
code.

af://n319
af://n328

Project Name BitBot

Description A typical ERC20 implementation with enhanced features.

Platform Ethereum; Solidity, Yul

Codebase GitHub Repository

Commits 1. 2e8d513a957f38149c2965012d4aa8bf2f8013cc
2. fc4ac3f5b6a3d55c9f0765d1194e3d1eadd941f9

Delivery Date January 15th, 2021

Method of Audit Static Analysis, Manual Review

Consultants Engaged 2

Timeline January 13th, 2021 - January 15th, 2021

Total Issues 6

Total Critical 0

Total Major 0

Total Medium 1

Total Minor 0

Total Informational 5

 Overview

Project Summary

Audit Summary

Vulnerability Summary

https://github.com/cryptoegro/bitbot
https://github.com/cryptoegro/bitbot/commit/2e8d513a957f38149c2965012d4aa8bf2f8013cc
https://github.com/cryptoegro/bitbot/commit/fc4ac3f5b6a3d55c9f0765d1194e3d1eadd941f9
af://n338
af://n340
af://n359
af://n375

ID Contract Location

TOK token.sol token.sol

17%

83%

Finding Summary

Medium
Informational

 Executive Summary

This report represents the results of CertiK's engagement with BitBot on their implementation of
the BitBot token smart contract.

The BitBot development team opted to use the Solidity version 0.8.0 , which makes the use of
the SafeMath library optional.

Our findings mainly refer to optimizations and Solidity coding standards, hence the issues
identified pose no threat to the contract deployment's safety.

 Files In Scope

 Findings

https://github.com/cryptoegro/bitbot/blob/fc4ac3f5b6a3d55c9f0765d1194e3d1eadd941f9/token.sol
af://n398
af://n404
af://n415

ID Title Type Severity Resolved

TOK-01 User-Defined
Getters

Gas Optimization Informational

TOK-02 Introduction of a
constant

Variable

Gas Optimization Informational

TOK-03 Introduction of an
immutable

Variable

Gas Optimization Informational

TOK-04 Redundant
Variable
Initialization

Coding Style Informational

TOK-05 Ambiguous
Functionality

Logical Issue Medium

TOK-06 external

Functions
Gas Optimization Informational

Type Severity Location

Gas Optimization Informational token.sol L308-L312

 TOK-01: User-Defined Getters

Description:

The linked variables contain user-defined getter functions that are equivalent to their name
barring for an underscore (_) prefix / suffix.

Recommendation:

We advise that the linked variables are instead declared as public and that they are renamed to
their respective getter's name as compiler-generated getter functions are less prone to error and
much more maintainable than manually written ones.

Alleviation:

The development team opted to consider our references, declared the linked variables as public
and removed the user-defined getter functions.

https://github.com/cryptoegro/bitbot/blob/2e8d513a957f38149c2965012d4aa8bf2f8013cc/token.sol#L308-L312
af://n461
af://n473
af://n476
af://n479

Type Severity Location

Gas Optimization Informational token.sol L312, L314

 TOK-02: Introduction of a constant Variable

Description:

The linked statements contain either contract-level variable declarations and assignments or
assignment to a literal. In both cases, the variables are never updated elsewhere in the codebase.

Recommendation:

We advise that the mutability specifier constant is imposed on those variables to greatly reduce
the gas cost incurred by utilizing them.

Alleviation:

The development team opted to consider our references and changed the tfees variable to
constant .

https://github.com/cryptoegro/bitbot/blob/2e8d513a957f38149c2965012d4aa8bf2f8013cc/token.sol#L312
https://github.com/cryptoegro/bitbot/blob/2e8d513a957f38149c2965012d4aa8bf2f8013cc/token.sol#L314
af://n482
af://n494
af://n497
af://n500

Type Severity Location

Gas Optimization Informational token.sol L310, L311

 TOK-03: Introduction of an immutable Variable

Description:

The linked variables are assigned a value in the constructor function and are never changed
elsewhere in the codebase.

Recommendation:

We advise that the mutability specifier immutable is imposed on those variables to greatly reduce
the gas cost incurred by utilizing them.

Alleviation:

The development team opted to consider our references and changed the decimals variable to
immutable .

https://github.com/cryptoegro/bitbot/blob/2e8d513a957f38149c2965012d4aa8bf2f8013cc/token.sol#L310
https://github.com/cryptoegro/bitbot/blob/2e8d513a957f38149c2965012d4aa8bf2f8013cc/token.sol#L311
af://n503
af://n515
af://n518
af://n521

Type Severity Location

Coding Style Informational token.sol L500, L501

 TOK-04: Redundant Variable Initialization

Description:

The linked variables are redundantly initialized upon declaration, as both will contain the proper
value with the statement in L503. Also, all variable types within Solidity are initialized to their
default "empty" value, which is usually their zeroed out representation. Particularly:

uint / int : All uint and int variable types are initialized at 0
address : All address types are initialized to address(0)
byte : All byte types are initialized to their byte(0) representation
bool : All bool types are initialized to false
ContractType : All contract types (i.e. for a given contract ERC20 {} its contract type is
ERC20) are initialized to their zeroed out address (i.e. for a given contract ERC20 {} its
default value is ERC20(address(0)))
struct : All struct types are initialized with all their members zeroed out according to this
table

Recommendation:

We advise that the linked initialization statements are removed from the codebase to increase
legibility.

Alleviation:

The development team opted to consider our references, declared and initialized the linked
variables as proposed.

https://github.com/cryptoegro/bitbot/blob/2e8d513a957f38149c2965012d4aa8bf2f8013cc/token.sol#L500
https://github.com/cryptoegro/bitbot/blob/2e8d513a957f38149c2965012d4aa8bf2f8013cc/token.sol#L501
af://n524
af://n536
af://n552
af://n555

Type Severity Location

Logical Issue Medium token.sol L503-L512

 TOK-05: Ambiguous Functionality

Description:

The linked code segment uses the calculateFees() to calculate the amount of token that will be
sent to the recipient and the amount that will be sent to the owner as a fee. Althought the said
function is implemented and utilized as expected, the variable amount is used over the
amounToSend in L511-L512.

Recommendation:

We advise to use the amounToSend over the amount variable, as two will either have equal value,
in case of a feeless sender/recipient, or the former will be lesser than the latter by the fee
amount.

Alleviation:

The development team opted to consider our references and changed the linked code segment
as proposed.

https://github.com/cryptoegro/bitbot/blob/2e8d513a957f38149c2965012d4aa8bf2f8013cc/token.sol#L503-L512
af://n558
af://n570
af://n573
af://n576

Type Severity Location

Gas Optimization Informational token.sol L277-L286, L295,
L338, L346, L363, L370, L377,
L381, L387, L401, L409, L420,
L438, L456, L475, L627

 TOK-06: external Functions

Description:

The linked functions are never called by the contracts, hence can be further optimized to save
gas.

Recommendation:

We advise to use the external attribute on the linked functions.

Alleviation:

The development team opted to consider our references and changed the visibility of the linked
functions to external .

https://github.com/cryptoegro/bitbot/blob/2e8d513a957f38149c2965012d4aa8bf2f8013cc/token.sol#L277-L286
https://github.com/cryptoegro/bitbot/blob/2e8d513a957f38149c2965012d4aa8bf2f8013cc/token.sol#L295
https://github.com/cryptoegro/bitbot/blob/2e8d513a957f38149c2965012d4aa8bf2f8013cc/token.sol#L338
https://github.com/cryptoegro/bitbot/blob/2e8d513a957f38149c2965012d4aa8bf2f8013cc/token.sol#L346
https://github.com/cryptoegro/bitbot/blob/2e8d513a957f38149c2965012d4aa8bf2f8013cc/token.sol#L363
https://github.com/cryptoegro/bitbot/blob/2e8d513a957f38149c2965012d4aa8bf2f8013cc/token.sol#L370
https://github.com/cryptoegro/bitbot/blob/2e8d513a957f38149c2965012d4aa8bf2f8013cc/token.sol#L377
https://github.com/cryptoegro/bitbot/blob/2e8d513a957f38149c2965012d4aa8bf2f8013cc/token.sol#L381
https://github.com/cryptoegro/bitbot/blob/2e8d513a957f38149c2965012d4aa8bf2f8013cc/token.sol#L387
https://github.com/cryptoegro/bitbot/blob/2e8d513a957f38149c2965012d4aa8bf2f8013cc/token.sol#L401
https://github.com/cryptoegro/bitbot/blob/2e8d513a957f38149c2965012d4aa8bf2f8013cc/token.sol#L409
https://github.com/cryptoegro/bitbot/blob/2e8d513a957f38149c2965012d4aa8bf2f8013cc/token.sol#L420
https://github.com/cryptoegro/bitbot/blob/2e8d513a957f38149c2965012d4aa8bf2f8013cc/token.sol#L438
https://github.com/cryptoegro/bitbot/blob/2e8d513a957f38149c2965012d4aa8bf2f8013cc/token.sol#L456
https://github.com/cryptoegro/bitbot/blob/2e8d513a957f38149c2965012d4aa8bf2f8013cc/token.sol#L475
https://github.com/cryptoegro/bitbot/blob/2e8d513a957f38149c2965012d4aa8bf2f8013cc/token.sol#L627
af://n579
af://n591
af://n594
af://n597

Appendix

Finding Categories

Gas Optimization

Gas Optimization findings refer to exhibits that do not affect the functionality of the code but
generate different, more optimal EVM opcodes resulting in a reduction on the total gas cost of a
transaction.

Mathematical Operations

Mathematical Operation exhibits entail findings that relate to mishandling of math formulas, such
as overflows, incorrect operations etc.

Logical Issue

Logical Issue findings are exhibits that detail a fault in the logic of the linked code, such as an
incorrect notion on how block.timestamp works.

Control Flow

Control Flow findings concern the access control imposed on functions, such as owner-only
functions being invoke-able by anyone under certain circumstances.

Volatile Code

Volatile Code findings refer to segments of code that behave unexpectedly on certain edge cases
that may result in a vulnerability.

Data Flow

Data Flow findings describe faults in the way data is handled at rest and in memory, such as the
result of a struct assignment operation affecting an in-memory struct rather than an in-
storage one.

Language Specific

Language Specific findings are issues that would only arise within Solidity, i.e. incorrect usage of
private or delete .

af://n600
af://n602
af://n604
af://n607
af://n610
af://n613
af://n616
af://n619
af://n622

Coding Style

Coding Style findings usually do not affect the generated byte-code and comment on how to
make the codebase more legible and as a result easily maintainable.

Inconsistency

Inconsistency findings refer to functions that should seemingly behave similarly yet contain
different code, such as a constructor assignment imposing different require statements on
the input variables than a setter function.

Magic Numbers

Magic Number findings refer to numeric literals that are expressed in the codebase in their raw
format and should otherwise be specified as constant contract variables aiding in their legibility
and maintainability.

Compiler Error

Compiler Error findings refer to an error in the structure of the code that renders it impossible to
compile using the specified version of the project.

Dead Code

Code that otherwise does not affect the functionality of the codebase and can be safely omitted.

af://n625
af://n628
af://n631
af://n634
af://n637

	 Disclaimer
	What is a CertiK report?

	 Overview
	Project Summary
	Audit Summary
	Vulnerability Summary

	 Executive Summary
	 Files In Scope
	 Findings
	 TOK-01: User-Defined Getters
	Description:
	Recommendation:
	Alleviation:

	 TOK-02: Introduction of a constant Variable
	Description:
	Recommendation:
	Alleviation:

	 TOK-03: Introduction of an immutable Variable
	Description:
	Recommendation:
	Alleviation:

	 TOK-04: Redundant Variable Initialization
	Description:
	Recommendation:
	Alleviation:

	 TOK-05: Ambiguous Functionality
	Description:
	Recommendation:
	Alleviation:

	 TOK-06: external Functions
	Description:
	Recommendation:
	Alleviation:

	Appendix
	Finding Categories
	Gas Optimization
	Mathematical Operations
	Logical Issue
	Control Flow
	Volatile Code
	Data Flow
	Language Specific
	Coding Style
	Inconsistency
	Magic Numbers
	Compiler Error
	Dead Code

